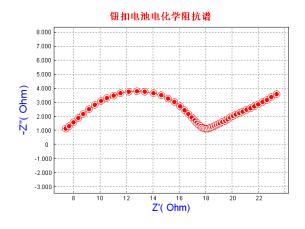
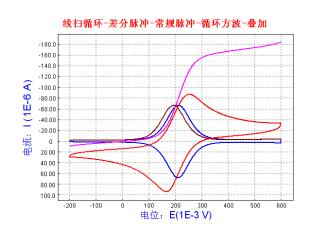


RCT® RST5000F 系列电化学工作站


RST5000F Electrochemical workstation



仪器简介

RST5000F 系列电化学工作站集成了线扫伏安、脉冲伏安、阶跃、溶出、脉冲电镀、交流阻抗谱、限 压反馈循环充放电、零阻电流检测等电化学控制与测量技术。软件运行于 WindowsXP、Windows7 等主流 操作系统,中文界面,具有快捷的菜单和强大的图形操作功能,融合了自动测峰、阻抗谱拟合、塔菲尔拟 合、超级电容拟合、标准加入法、标准曲线法等专业技术。根据不同应用领域,有 RST5100F、RST5200F、 RST5202F 等十多个型号可供选择。仪器易学易用,已在几百个高等院校及企事业单位推广应用。

◆ 仪器亮点

- 具有五十余种电化学测量方法,紧跟电化学测量技术的发展前沿。
- 极高的测量分辨率、精度及抗干扰能力,满足痕量组分检测及精确标定。
- 电位扫描范围宽,最大±12.8V,确保有机、钝化、电池、超级电容等测量。
- ◆ 大电流驱动,最大±2A,确保电解、储能、腐蚀等大面积电极体系的应用。
- 丰富的智能测量、拟合技术及专业知识库,极大地减轻实验操作者的工作强度。
- 激励及采集速率高达 10Msps,能适应高速扫描及高频交流阻抗谱的测量需求。
- 设有极性、电压、电流、时间、链路保护机制,大大提升储能电化学实验的安全性。
- 可与 RSTSMART 系列仪器连机,综合软件同步运行,实现毛细管电泳及电化学发光检测。

◆ 主要技术指标

电位更新及阻抗采集速率

仪器架构 恒电位仪、恒电流仪、交流阻抗频谱仪,F型

槽压±15V电位扫描范围±12.8VCV 最小电位增量0.0125mV电位控制精度<±0.5mV</td>电位控制噪声<0.01mV</td>电位上升时间<0.00025mS</td>电位测量零位自动校正

电位测量低通滤波器 自动或手动设置 电位测量精度 满量程的 0.1%

扫描速度 0.000001V/S~20000V/S

参比电极输入阻抗//电容 $>10^{13} \Omega //<10 pF$

最大恒电流输出 ±0.5A、±1.0A、±2.0A、连接扩展器±10A

10MHz

输入偏置电流 <0.1pA

电流测量分辨率 电流量程的 0.00076%, 最小 0.2fA

电流测量零位 自动校正

电流测量量程 1pA~0.5A(25 档)、1A、2A

前置放大倍数5×10×100电流测量最高灵敏度1×10⁻¹²A/V电流测量精度满量程的 0.1%电流测量低通滤波器自动或手动设置方波伏安法频率1Hz~100kHz交流伏安法频率0.1Hz~5kHz

交流阻抗谱频率 0.00001Hz~1MHz(11个频段)

正弦波幅度 $0.01 \text{mV} \sim 2.3 \text{V}$ CA 和 CC 脉冲宽度 $0.1 \text{mS} \sim 1200 \text{S}$ DPV 脉冲宽度 $0.05 \text{mS} \sim 64 \text{S}$

IR 降补偿 自动或手动设置 $(10\Omega \sim 1M\Omega)$

多阶跃循环次数 1000 次 限压反馈恒流换向时间 <0.1mS

恒流限压循环周期 0.1S~100000S

脉冲电镀//最小脉宽 八相脉冲可正可负//0.05mS 电池全容量充电工步 激活、恒流、恒压、涓流

双通道高速 ADC18bit@1Msps最大数据长度20000000 点

通氮搅拌及敲击控制输出 二路开关量信号(+5V/10mA) 扩展输出 二路光电隔离数字量信号

储能电化学测量保护模式极性、电压、电流、时间、链路

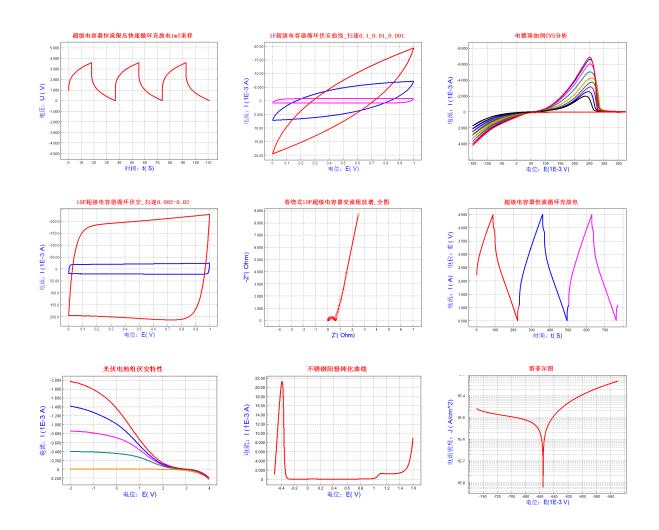
电极智能柔性保护 电压超载、电流超载 仪器尺寸 36×30×14(立方厘米)

仪器重量 8kg

◆ 热销型号

RST5200F(电流= +/-0.5A) RST5201F(电流= +/-1.0A) RST5202F(电流= +/-2.0A)

◆ RST 系列电化学工作站选型表


序号	电化学方法	5030F	5050F	5060F	5080F	5090F	5100F	5200F
1	线性扫描伏安法 LSV	•	•	•	•	•	•	•
2	线性扫描溶出伏安法	•	•	•	•	•	•	•
3	线性扫描循环伏安法 LCV	•	•	•	•	•	•	•
4	环形扫描			•		•	•	•
5	阶梯伏安法 SV	•	•	•	•	•	•	•
6	阶梯溶出伏安法	•	•	•	•	•	•	•
7	阶梯循环伏安法 SCV	•	•	•	•	•	•	•
8	方波伏安法 SWV		•	•	•	•	•	•
9	方波溶出伏安法		•	•	•	•	•	•
10	方波循环伏安法 SWCV		•	•	•	•	•	•
11	差示脉冲伏安法 DPV	•	•	•	•	•	•	•
12	差示脉冲溶出伏安法	•	•	•	•	•	•	•
13	常规脉冲伏安法 NPV	•	•	•	•	•	•	•
14	差示常规脉冲伏安法 DNPV	•	•	•	•	•	•	•
15	单电位阶跃计时电流法 CA		•	•	•	•	•	•
16	单电位阶跃计时电量法 CC		•	•	•	•	•	•
17	多电位阶跃计时电流法		•	•	•	•	•	•
18	多电位阶跃计时电量法		•	•	•	•	•	•
19	恒电位电解 I-T 曲线		•	•	•	•	•	•
20	恒电位电解 Q-T 曲线		•	•	•	•	•	•
21	恒电位溶出 I-T 曲线			•	•	•	•	•
22	恒电位溶出 Q-T 曲线			•	•	•	•	•
23	开路电位 E-T 曲线 OCPT	•	•	•	•	•	•	•
24	电位溶出 E-T 曲线			•	•	•	•	•
25	单电流阶跃计时电位法 CP			•	•	•	•	•
26	多电流阶跃计时电位法			•	•	•	•	•
27	控制电流 E-T 曲线			•		•	•	•
28	交流伏安法 ACV				•	•	•	
29	交流溶出伏安法				•	•	•	
30	交流循环伏安法 ACCV				•	•	•	
31	塔菲尔图 Tafel		•	•		•	•	
32	交流阻抗谱 EIS				•	•	•	
33	电池恒流充电				•		•	
34	电池恒流放电				•		•	•
35	电池恒流循环充放电				•		•	•
36	电池全容量分段充电				•		•	•
37	电池全容量分段放电				•		•	•
38	脉冲电镀法					•	•	•
39	电镀电位监测					•	•	•
40	氯离子浓度监测			•		•		•
41	宏电池电流监测			•		•		•
42	半电池恒流阳极极化				•		•	•
43	半电池恒流阴极极化				•		•	•
44	半电池恒流循环极化				•		•	•
45	微分电容-电位					•	•	•
46	微分电容-频率					•	•	•
47	交流阻抗-电位				•	•		•
48	交流阻抗-时间					•		•
49	电偶腐蚀					•		•
50	恒流限压快速循环充放电						•	•
51	高阻电位计			•		•		•
52	零阻电流计			•		•		•

^{*} 宏方法: 用户可自编脚本进行多种电化学方法的组合运行

◆ 应用领域

电化学教学 电化学合成 电镀工艺开发 环境保护监测 电解、冶金、制药 电化学腐蚀研究测量 电池化成及特性测试分析

电化学分析 痕量元素检测 电池材料研究 纳米材料研制 生物电化学传感器 超级电容器特性测试分析 电压及电流时间曲线记录仪

◆ 联系方式

苏州瑞思泰电子有限公司 网站: http://www.cnrst.com 信箱: szrst@vip.sina.com

技术 QQ: 405098735

郑州世瑞思仪器科技有限公司 网站: http://www.srs666.com

信箱: zbw1952@163.com 技术 QQ: 849845313 Suzhou Risetest Electronic Co., Ld.

电话: 0512-62828719 手机: 18934582027 技术支持: 15962287178

Zhengzhou Shiruisi Instrument Technology Co., Ld.

电话: 0371-60389282 手机: 13608675847 技术支持: 18939578225